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Abstract—A review of the current state of research of Fourier 
analysis as applied to the field of optical fibre sensing is presented. 
The implications that using Fourier based multiplexing schemes 
have on the requirements for sensor design and network 
configuration is discussed. The flexibility of Fourier techniques is 
also demonstrated, with the ability to profile the fringe visibility 
or chirp of an interference spectrum. Generalisations of Fourier 
analysis to wavelet and chirplet analyses and their relevance to 
optical fibre sensor networks are also discussed. 
 

Index Terms—Fourier transforms, harmonic analysis, 
multiplexing, optical fibre sensors. 
 

I. INTRODUCTION 
OURIER analysis is a particular branch of the more general 
field of harmonic analysis, and is used to analyse the 

individual harmonic frequencies that exist in a given space by 
means of the Fourier transform [1] which breaks up the space 
into its individual constituent sinusoidal components with their 
relative phases intact (Herein only formulae for the continuous 
representations will be presented; the discrete versions being 
easily derived from them): 
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The Fourier transform is traditionally used in optical sensing, as 
is the case for many conventional measurement technologies, 
for the interpretation of the, normally time varying, measured 
data. Periodic, or quasi-periodic, signals are isolated by the 
corresponding basis function (i.e. the exponential in the 
integrand) of eqn. (1); allowing an analysis of the constituent 
frequency components and their relative phases. Applications 
of this can be found in areas such as speech recognition using 
an acoustic sensor, determining gas concentrations with a 
chemical sensor and closed loop controlled system where tasks 
such as automatic alignment or damping of vibration is desired. 
This use of the Fourier transform as a standard signal 
processing tool is already well established forming the core 
material for many signal processing texts. 
 
However, when the domain variable, z, represents wavelength 
or wavenumber, it can be seen that the Fourier transform can 
also be applied to the analysis of interferometric sensors, such 

 
 

as Fabry-Perot [2], Sagnac [3], Mach-Zehnder [4]-[5] and 
Michelson interferometers [6], where the transmission and 
reflection spectrum is a periodic (and, in the case of all but that 
of the Fabry-Perot, sinusoidal) function of the wavenumber at 
zero dispersion. This paper presents a review of such a use of 
Fourier analysis for optical fibre sensors; extending further on 
the material previously presented in [7]. 
 
Fourier processing can either be performed electronically or 
optically. Digital signal processing has the benefits of greater 
flexibility, whereas, an all optical system has the benefit of 
processing at speed faster than can be possibly achieved using 
electronics. Nevertheless, the development of computational 
algorithms which reduce the number of operations from scaling 
as O(N2) to O(NlogN) [8] and further numerical packages such 
as FFTW (Fastest Fourier Transform in the West) [9] as well as 
rapid advances made to computational processing speeds and 
the ability for these algorithms to be parallel processed (which 
reduces the time to O(log2N) [10] and the throughput to O(logN) 
[11]) allow for fast enough computation to satisfy the needs of 
most sensing applications. 
 
The two basic measurements that can be made using Fourier 
analysis are spectral shifts and periodicity measurements. The 
dual Fourier relations governing this are: 

 ( ) ( ) ( ) ( ) zsiesFsFzzfzf δπδ 2−→⇔−→  (2) 
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Assuming that g(z) is a real valued function (thus G(s) is 
hermitian and |G(s)|=|G(-s)|), the shift and period can be 
extracted from the respective phase and magnitude spectra of 
the Fourier domain as: 
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This method of measuring the shift and periodicity provides 
much more accurate measurements than conventional 
techniques that use peak detection, differentiation and zero 
crossing [12], etc. These conventional techniques have intrinsic  
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errors that cannot deal with situations where the peak is very 
flat, there is significant sidelobes around the peak, or when 
there is a skew effect due to the envelope of an interferometer 
[13]. The approach of eqn. (5), which exploits the symmetry in 
the Fourier domain, makes maximal usage of the available data; 
providing even greater accuracy than making use of the 
corresponding conventional techniques in the Fourier domain. 
Like all good wavelength based measurements, eqns. (4) and (5) 
are invariant of changes to the light source power (due to eqn. 
(4) being only dependent on the phase spectrum and eqn. (5) 
being self-referencing). 
 
In recent years Fourier analysis has been increasingly used to 
improve the performance and multiplexing capabilities of 
grating based sensor networks [14]-[25]; devices that it is not 
so naturally suited to as was the case for interferometric 
sensors. This has come about in part by an increase in 
fundamental research into the inverse scattering problem that 
has assisted in the design of non-uniform grating structures. 
This has in turn enabled the production of fibre gratings with 
virtually arbitrary transmission spectra and group delay to meet 
the demands of advancing optical communications and sensing 
technologies. Although not all inverse scattering algorithms 
make use of Fourier analysis, the wider category of 
representation theory is common to all, and a complete 
overview of this field that is fundamental to understanding fibre 
grating technology will be looked at in section II. Section III, 
following it, will look at how Fourier techniques have enabled 
new and improved sensor multiplexing technologies and 
section IV will look at some further techniques to which 
Fourier analysis has recently been applied in optical fibre 
sensor systems. 
 
As grating based sensors are not periodic, but rather have 
localised spectra, the use of Fourier analysis, which makes use 
of periodic non-localised basis functions e2πis, is not necessarily 
the best approach. Wavelet transforms, which have localised 
basis functions, have been applied to the demodulation of fibre 
sensor signals [25]-[27]. An overview of the theory and 
techniques of wavelet transformation will be presented and 
further discussion as to its relevance to optical sensing will be 
given in section V. 

II. SYNTHESIS AND RECONSTRUCTION 

A. Inverse Problems in fibre grating devices 
 
The response of a fibre optic sensor is dependent on the 
influence of the measurand at each point along its length and, 
for distributed sensing, it is often desirable to know how the 
measurand induced variations vary across the sensors length. 
This is the reconstruction problem, where e.g. a measured 
spectrum is used to determine the structure of a sensor. A 
similar problem is the synthesis problem, where a desired 

spectrum is used to determine what the structure of the sensor 
needs to be in order to achieve it. These inverse problems are 
traditionally carried out using the approach of Gel’fand, 
Levitan and Marchenko (GLM) [28]-[29], who used integral 
equations to determine the form of a differential equation (DE) 
based on its boundary conditions: 
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0
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 (6) 

where f is a Fourier function determined by the boundary 
conditions of the DE (the scattering data) and K is an 
integration kernel used in expressing the Jost solution of the DE 
in terms of travelling waves (from which the scattering 
potential can be determined). Using such an approach yields a 
solution; however, performing the numerical integration is 
computationally demanding and ideally requires some form of 
optimisation to speed up the process. 
 
The coupled mode equations: 
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can arise in the solution of the Cauchy problem of the cubic 
Schrödinger equation [30], which has led to their description as 
the “Zakharov-Shabat system” (ZS) in the context of inverse 
scattering. In this case, inverse scattering attempts to find the 
function q from a knowledge of the boundary conditions of A 
and B. Expressing eqn. (7) as a matrix equation, and making the 
required modifications to eqn. (6) to put it in a coupled 
vectorial form gives for the counter-propagating (+q) case: 
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f(x,y) in this context is the Fourier transform of the complex 
reflection coefficient (plus integration around zeros in the 
appropriate complex half plane) and is only necessarily of one 
variable, x+y. The coupling coefficient q(z) can be found from 
the lower term of the integration kernel as [30]: 
 ( ) ( )tzKzq
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The GLM-ZS approach can be greatly improved in terms of 
computational speed by making use of the inherent causality 
that occurs within the ZS system. Let us discretise the optical 
device into several “layers” where q is piecewise constant (the 
so called Goupillaud medium). The GLM equations make use 
of Hardy spaces, i.e. the response of a medium must be 
quiescent (have zero signal) before an initial impulse at t=0. 
Due to this, the initial response for the counter-propagating 
case at t=0 must be entirely due to the first layer of the device 
and the initial response for the co-propagating case at time 
t=Nτf must be due to propagation along the fast mode only (N 
layers of time τf). For the case in reflection, iteration continues  
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one layer at a time (as is shown in fig. 1); the coupling constants 
of previously evaluated layers determining the truncated 
impulse response, the mismatch of which with the measured 
response in turn determines the coupling constant of the new 
layer. For the case in transmission things are more complicated 
due to all the layers being interrelated. 
 
This approach is known as a layer peeling algorithm. It was 
devised by geophysicists Robinson [31] and Goupillaud [32] 
who applied it to the determination of seismic structure. Several 
different layer peeling methods have been developed for the ZS 
system for the case of Fibre Bragg Gratings (FBGs) [33]-[36] 
and Long Period Gratings (LPGs) [37]. When properly 
optimised, the number of computational operations for these 
algorithms scales as O(N2). These methods are known as the 
time-frequency domain layer peeling (TFDLP) method ([33] 
with enhancements given in [38]), the frequency domain layer 
peeling (FDLP) method [34], the time domain layer peeling 
(TDLP) method [35] and the integral layer peeling (ILP) 
method [36]. The latter of these is actually a hybrid method 
between taking the approach of layer peeling and performing 
the numerical integration of the GLM equations. Another 
recent approach, known as the Toeplitz inner-bordering (TIB) 
method ([39] with enhancements given in [40]), solves the 
GLM equations, but makes use of the inherent Toeplitz 
symmetry of the matrix equations involved in order to achieve 
the required O(N2) number of operations for fast processing. 

 
Fig. 1. Schematic of a layer peeling process for the counter-propagating case, 

where scattering events are represented as a discrete lattice of dots in space and 
time (∆t is the propagation time between layers). Arrows pointing diagonally up 
and to the right indicate the forward propagation in time, and building up of, the 
truncated impulse response, Arrows pointing diagonally down and to the right 

indicate the back propagation of the actual impulse response. Where these 
intersect at a lattice point, the coupling constant (and those of all lattice points 
vertically above as it doesn’t change with time – arrows pointing up) can be 

determined provided the arrows have propagated along a path of lattice points  

 

of known coupling constants. Iteration thus continues scanning up and to the 
right. 

Apart from being inherently part of the structure of the GLM 
equations (in the theory of Hardy spaces and detemining the 
function f), Fourier analysis plays a strong role for the case of 
algorithms that exhibit a time-frequency domain, or just a pure 
frequency domain, approach. The impulse response and the 
reflection spectrum are related by a Fourier transform linking 
the frequency domain expression of the reflectivities of the 
layers already determined to the time domain expression of the 
reflectivity of the layers up to the one yet to be determined. This 
is equivalent to the zeroing in process in t and z of the limit in 
eqn. (9). 
 
Errors involved in layer peeling come from the errors involved 
in processing each layer and generally accumulate 
exponentially [35],[41]. A comparison of the FDLP, TFDLP 
and TDLP methods tested in [42] shows that the amount of 
error accumulation is much less for the case of time domain 
methods indicating that the majority of this error comes from 
trigonometric calculations involved in the FFT. As a result it is 
expected that frequency domain methods will be phased out of 
use as numerical algorithms, though they will still likely remain 
of use for understanding the process of inverse scattering. The 
TIB method is still relatively untested, but due to the inherent 
numerical stability and lack of simplifying assumptions made 
could be expected to replace the layer peeling methods entirely. 

B. Reconstruction: Finding the location of a measurand 
 
Reconstruction plays a role in sensing in that it allows one to 
determine the spatial variation of the measurand(s), giving 
more of a measure of distributed sensing rather than just 
treating the fibre sensors as point sensors. Due to having less 
reconstruction error [35], as well as being more readily able to 
apply simplifying assumptions, chirped gratings (where the 
resonant wavelength varies across the length of the grating) are 
most often employed in these situations. Such assumptions are 
often needed in order to achieve real time processing by 
reducing the computational time down from an order O(N2) 
process to one of order O(N) and/or increasing the data 
collection rate of the swept wavelength system by eliminating 
the need for phase measurements (e.g. [43],[44]). Applications 
where reconstruction has played a role in determining the 
spatial variation of a measurand include distributed strain and 
temperature sensing [45], crack monitoring in concrete and 
composite structures [46], fatigue and wear monitoring in 
industrial process control [47], as well as characterising the 
photosensitivity of fibres used in fabricating the FBG sensors 
[48]-[49]. 
 
For the case of grating synthesis, the uniqueness of the solution 
is not a problem, because any solution will suffice. However, 
for the case of reconstruction, if there are multiple (or an  
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infinite number of) inverse solutions to a given set of scattered 
data then one can potentially be grossly mistaken by 
determining the measurand based on one of these. This is more 
of a problem for LPGs than for FBGs as FBGs only require the 
complex reflection spectrum in order to uniquely reconstructed 
them (the complex transmission spectrum can be derived due to 
conservation of energy and causality [50]), whereas LPGs 
require both the complex core-to-core and core-to-cladding 
transmission coefficients (the latter of which is very difficult to 
obtain experimentally). It has been shown, though, that by 
altering the system architecture a reconstruction can be 
performed using only a complex core-to-core transmission 
spectrum measurement [51]. 

III. MULTIPLEXING 
 
The Fourier series forms an orthogonal basis on the measured 
data set. A component of the Fourier spectrum that is unique to 
one sensor will allow that sensor to be monitored using 
orthogonal detection, in the idealised sense without crosstalk 
from any other sensors that occupy the same wavelength or 
time channel [52]. The Fourier domain can thus be divided up 
like the wavelength domain is for Wavelength Division 
Multiplexing (WDM); an example of which is shown in fig. 2. 

 
Fig. 2. Domain division access for multiplexing in the wavelength domain and 

its Fourier dual domain. 

 
In order to fit within the grid of a multiplexing model, such as 
the type shown in fig. 2, the sensor will not only be constrained 
in terms of wavelength and bandwidth, but also in terms of a 
certain type of spectral shape due to limitations in the Fourier 
domain. The transmission spectrum of a FBG that satisfies the  
 

 
 
 
requirements to be multiplexed and demultiplexed using 
Fourier decomposition is given by [15] as: 
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Fig. 3. Grating profile for j=1. 

where j is the channel number that the grating will appear in the 
Fourier domain, δλ is the detuning from the resonant 
wavelength, L is the transmission dip depth of the FBG, d is a 
parameter related to the sampling resolution and the maximum 
channel capacity and η and ζ are variables governing the 
guardband widths. Applying a layer peeling algorithm [38] to 
this gives the spatial variation of the index perturbation as is 
shown in fig. 3 for the case of j=1. It should be noted that 
fabrication constraints will cause a deviation from this idealised 
structure. Furthermore, differential measurand variations can 
have a large effect on the stability of the spectrum [53], though 
for certain applications this may prove to be useful. 

The Fourier transform operates on linear vector spaces and 
as such requires the spectrum (which is a product of the SU(2) 
transmission matrices) to be linearised first. The best to which 
this can be achieved is by making a scalar approximation 
(which ignores multiple scattering) and conjugating as [15]: 

 ( ){ } ( ){ }jRj DRDX 2log: 2→  (11) 
The spectrum can then be transformed and analysed. 

Modifying eqn. (4), the change in wavelength can be 
determined as [15]: 
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where ∆λ is the width of the WDM channel, the tan-1 function 
includes phase unwrapping and the expectation value brackets 
“<…>” denote a suitable weighted average over the peak in the 
magnitude spectrum of the Fourier domain corresponding to 
the grating (this method of weighting gives less error than say a 
linear regression [54] which is more sensitive to the end points 
where the phase error is greater due to the reduced level of the 
magnitude spectrum). The accuracy of eqn. (12) is only 
dependent on the grating bandwidth and as such is superior to 
other techniques such as peak detection and zero crossing, etc.,  
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where flat regions of the grating spectrum or skew effects [13] 
may cause errors. 

 
Fig. 4. Peaks in the Fourier domain allowing the identification of 8 sensors 

multiplexed with the same nominal Bragg wavelength (The peak of the seventh 
sensor isn’t depleted as much as neighboring peaks as its Bragg wavelength is 
perturbed by the measurand so that it only partially overlaps the bandwidth of 

the other sensors) [17] 

 
For the case where eqn. (11) is not applied, 5 weakly reflecting 
narrowband gratings [20] and 50 weakly reflecting gratings 
occupying the entire C band (thus being incompatible with 
WDM) [21] have been multiplexed using a Fourier based 
multiplexing. With eqn. (11) applied, 8 strongly reflecting 
gratings with more localised spectra have been multiplexed 
(see fig. 4) [17], but with the potential to easily extend to a total 
network of 64 sensors using WDM. As such, large sensor 
counts suitable for applications such as monitoring large scale 
structures can be achieved. This degree of multiplexing brings 
down the cost per unit sensor such that optical sensing is able to 
compete with conventional sensing technologies as an 
economically viable technology. 
 
Crosstalk occurs between sensors when there is a mixing of the 
signal between two sensors that is not properly separated 
during demultiplexing. This can come about from two causes. 
Firstly, the fabrication of the grating may be non-ideal; with a 
sensor having a Fourier spectrum that overlaps a component (or 
range of components) of the Fourier spectrum that is used for 
detection of another sensor. Secondly, nonlinearities caused by 
the sensor network architecture can cause frequency 
components of one or more sensors to mix giving a frequency 
that corresponds to another sensor [55]. 
 
In both cases crosstalk generally occurs from a sensor with 
lower Fourier frequencies to sensors of higher Fourier 
frequencies [16], in the former case as non-ideal fabrication 
generally causes higher harmonics in the Fourier domain to 
appear, and in the latter case as the nonlinear mixing of sensors 
favours higher frequency generation [55]. In the former case 
the crosstalk is significantly less than what a simplistic  

 
 
quantitative analysis obtained from performing a relative 
measurement of the overlap integral of the Fourier spectrum of 
the two sensors would suggest [56]. Further research into this is 
ongoing. For the latter case, a statistical study of the crosstalk 
error for various sensor network sizes and sensor reflectivities 
has been performed and is presented in fig. 5. To achieve error 
levels below a moderate value of 10µε on a realistic system, it 
is shown that it is impossible to extend the sensor network 
capacity beyond 20 sensors. 

 
Fig. 5. Expected Crosstalk Error for various FBG sensor network sizes and 

sensor reflectivities (legend in dBs) [55]. 

IV. OTHER USES 
Fourier transformation is not just useful for determining the 
movement of sinusoidal components in a given spectrum; it can 
also be used to extract information based on changes in the 
nature of those components. Sinusoidal signals can be 
amplitude or phase modulated and both changes to the 
amplitude as well as nonlinear changes to the phase can both be 
extracted from a signal using Fourier analysis. 

A. Visibility of Fringes 
 
A number of evanescent sensors make use of gratings with 
in-line Michelson, Mach-Zehnder or ring structures [57]-[59], 
with one mode propagating as the guided core mode and the 
other as one of the cladding modes. Losses to the cladding 
mode leave less power to cause interference and thus reduce the 
visibility of fringes. 

As: 

 ( ) ( ) ( ) ( )[ ]ksksvskv ++−+→+ δδδλπ
2

2cos1  (13) 

the visibility can thus be reconstructed from the magnitude 
spectrum of the Fourier domain as twice the area of either the 
positive or negative frequency peak corresponding to the 
interference divided by the area of the zero frequency peak: 
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The area is used as the visibility of fringes will generally vary 
across a spectrum, in which case the value of v on the RHS of 
eqn. (13) is different to that of the LHS (related by Fourier  
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transformation) and acts by convolution rather than 
multiplication. As the visibility is expected to vary slowly with 
the spectrum, its dual representation on the RHS should be 
localised enough that there will be no overlap with the zero 
frequency delta function and the area thus provides an effective 
mean of the visibility spectrum. 
 
This provides a very stable mechanism for determining 
measurand changes as it inherently has both amplitude and 
phase invariance. The measured sensor spectrum consists of an 
envelope amplitude spectrum multiplied by the interference 
term; i.e. the LHS of eqn. (13). In the dual domain the 
transform of this envelope spectrum (and variations thereof) 
acts on the RHS of eqn. (13) by convolution. Provided the 
transform is sufficiently compact that the broadening does not 
cause the zero frequency and interference peaks to overlap, the 
two peaks can still be distinctly identified. As convolution is 
area preserving, the division of areas of the peaks in eqn. (14) is 
invariant to the amplitude spectrum and thus to any instabilities 
in the light source. 
 
The phase invariance of the visibility of fringes measurement 
comes about as a result of only requiring the magnitude 
spectrum, which in eqn. (2) is unchanged. There is even greater 
phase stability in that, although the value of k is needed to 
locate the window over which to determine the area of the 
interference peak, if the peak is confined well enough within 
this window then small changes in k are also not going to affect 
the visibility measurement. The visibility measurement is thus 
stable against any spectral shifts, which is a particular issue 
when using LPGs or other devices with a high degree of cross 
sensitivity. 
 
There is, however, a deterioration of the measured value of the 
visibility of fringes if chirp is introduced into eqn. (13). 
Spectrally, nonlinearities in the argument of the cosine 
interference can be examined by expanding them as a Fourier 
series of terms that apply frequency modulation to the base 
frequency k, which in turn expand by the Jacobi-Anger 
expression as a series of Bessel valued sidebands. This process 
of splitting into all these terms does not in general preserve area 
(by Parseval’s theorem it is the square of the magnitude that is 
conserved), and as a result it may be better to opt for a root 
mean square approach for the expectation values of eqn. (14) in 
cases where there may be a significant amount of chirp present. 
Alternatively, the chirp can be quantitatively analysed (as listed 
below) and used to compensate for the depletion of the 
measurement of the visibility of fringes. 
 
An example application of visibility of fringes measurements is 
shown in fig. 6, where the humidity can be monitored from a 
pair of LPGs (arranged as a Mach-Zehnder interferometer) 
with a hydrogel coating between them which alters the cladding  

 
 
 
mode. It has been shown for this sensor that measurements 
based on the visibility of fringes provide a much greater 
linearity and repeatability than measurements based on the 
wavelength shift [60]. 

 
Fig. 6. Change in fringe visibility for a cascaded LPG based humidity sensor. 

 
Similarly, visibility of fringes measurements have been used to 
accurately measure the external refractive index from a pair of 
blazed FBGs (arranged as a mono-directional ring cavity) [59].  
 
As such it can be seen that visibility measurements using 
Fourier techniques form a greatly useful and highly stable 
method to demodulate signals, particularly from evanescent 
fibre sensors. 

B. Chirp and Dispersion 
 
Chirp, which appears as a nonlinear dependence of the phase of 
a sinusoidal interference upon wavelength can also be 
measured by developing inverse solutions such as eqn. (4), but 
based on the Fourier relations: 
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where eqn. (15) shows the transform of a linear chirp (with 
phase quadratic in wavelength) and eqn. (16) that of a quadratic 
chirp (with phase cubic in wavelength). The RHS of eqn. (15) 
can easily be solved for k2, whereas that of eqn. (16) requires a 
numerical approach to determine k3. 
 
Chirp can be caused by various forms of dispersion in the fibre 
or due to time lag effects within the component that provides 
the splitting and recombination of the interference. Even where 
there is no dispersive effect, chirp will be seen in an 
interferogram for the case where the measurand is changing 
during the period of time it takes to scan over the wavelength 
range. Thus a measurement of chirp can be used as a means to 
determine what effect a measurand has upon the dispersion in a  
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fibre, or as a self-evaluating test of the quality of experimental 
control exercised. 
 

 
Fig. 7. Fourier spectrum of a Sagnac interferometer made from highly 
birefringent photonic crystal fibre showing significant broadening due to linear 
chirp and partial asymmetry due to quadratic chirp. 

 
An example of a Fourier spectrum of an interferometer with a 
high degree of nonlinearity (a Sagnac interferometer using 
highly birefringent photonic crystal fibre) is shown in fig. 7. 
The presence of such higher order nonlinearities creates a 
broadening of the peaks measured in the Fourier domain (with 
the exception of the zero frequency peak, whose width only 
depends on the envelope spectrum). The asymmetric odd order 
terms will also shift the apparent location of the peak, whether 
this is visually determined or evaluated using eqn (5). 
Performing an analysis of the higher order terms allows for a 
more accurate depiction of the interferometric effects in the 
sensors and ultimately an improved analysis of the 
measurand(s). 

V. WAVELET ANALYSIS 
 
Where Fourier analysis is part of a wider field known as 
harmonic analysis, which allows analysis to be performed on 
more generalised spaces than L2 (i.e. the space spanning the 
square integrable functions) used by Fourier analysis, harmonic 
analysis is part of a wider field known as representation theory 
where the restrictions are looser and allow for a wider variety of 
tools. Instead of projecting onto the space spanned by e2πis 
(each component of which is infinitely spread out in time unlike 
any realistic signals), wavelet transforms project to a family of 
functions given by dilations and translations of coherent states 
(the wavelet) that have a measure of localisation in both time 
and frequency [61]. 
 
The wavelet transform grew out of studies of the affine group 
[62] and engineering developments in designing quadrature 
mirror filter banks [63]. The main goal of these developments 
was to design filter banks that would allow signals to be 
multiplexed and demultiplexed without any alteration of the 
signal as a result of this process. For this to happen, certain  

 
 
 
conditions need to be met by the filter banks [64]. The wavelets 
that correspond to filter banks in general form non-orthogonal 
basis sets (with a few exceptions, such as the Daubechies 
wavelets), which means that the reconstruction is not 
necessarily unique and thus the reconstructed signal may be 
different from the original signal. 
 
One of the intrinsic properties about wavelet based 
reconstructions is their multi-resolution capability [65]-[66]. 
Wavelets corresponding to higher frequencies are obtained by 
dilation to a smaller size, which also gives them the ability to 
resolve at a finer scale in the time domain. This is generally 
more useful for applications such as speech and other forms of 
acoustics, where the varying resolution scale corresponds more 
realistically to the way in which the human ear perceives sound. 
However, it is also a useful property for the transmission and 
analysis of signals in general. 
 

 
Fig. 8. Multiresolution domain division access for multiplexing in the 
wavelength domain and a dual domain based on wavelet decomposition. 

 
An application of the multiresolution capability of wavelets (in 
this case in the form of a binary tree decomposition) to 
multiplexing would alter the domain representation from that 
given in fig. 2 to what is shown in fig. 8. The measurement 
range and accuracy can be seen to vary between the different 
vertical wavelet levels. In the higher levels there is not much 
space in the wavelength for the sensors to operate over, but 
there are a lot of data points in the inverse domain to accurately 
determine any shifts. The contrary is the case for lower levels. 
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Tailoring of the distribution and shape of the wavelet windows 
is also possible by controlling the scaling of the wavelets. This 
gives a multiplexed sensor network based on wavelet 
decomposition the flexibility to tailor the performance of 
individual sensors in the network to match the various 
measurement needs associated with the given application that 
can vary from point to point and with different measurands. 
One thing to note, though, is that there are also heavier 
restrictions on the amount of useable spectral space due to 
potential overlaps of the generally wide-in-inverse-wavelength 
DC peaks of high level sensors with windows of lower level 
sensors. For the case of sensors with a large amount of chirp in 
their interference spectrum mentioned above (and particularly 
sensors having increasing chirp with inverse wavelength) the 
DC peak is proportionally much narrower (see fig. 7) and such 
a distribution would make an ideal fit. 
 
Further generalisations of the wavelet transform have also been 
made, e.g. the chirplet transform [67], where the family of 
functions is extended to allow variations in chirp along with the 
existing translation and dilation operations of the mother 
wavelet. This can be used for tailoring of the wavelet windows 
of fig. 8 to tilt off axis (as can be done with the fractional 
Fourier transform to that of fig. 2) as well as providing a more 
natural basis for analysing chirped signals. Wavelet and 
chirplet approaches, for instance, allow one to more naturally 
perform intra-grating sensing on chirped gratings; monitoring 
changes in the measurand(s) along the length of the fibre. 

VI. CONCLUSION 
A review of Fourier theory applied to the field fibre optic 
sensing was presented. Areas of multiplexing, grating design 
and various spectral analyses were covered. 

 

REFERENCES 
[1] J.B.J. Fourier “Mémoire sur la propagation de la chaleur dans les corps 

solides (extrait)” in Nouv. Bull. Sci. Soc. Phil. Paris, T. 1, No. 6, pp. 
112-116, 1808 (in French). 

[2] S.M. Musa “Real-time signal processing and hardware development for a 
wavelength modulated optical fiber sensor system” Ph.D. Dissertation, 
Virginia Polytechnic Institute and State University, 1997. 

[3] G. Sagnac “Strioscopie et striographie interférentielles analogues à la 
méthode optique des stries de Foucault et de Töpler” in Compt. Rend. 
Acad. Sci. Paris, T. 153, No. 2, pp. 90-93, 1911 (in French). 

[4] L. Zehnder “Ein neuer interferenzrefraktor” Z. Instrkde, T. 11, h. 8, s. 
275-285, 1891 (in German). 

[5] L. Mach “Über einen interferenzrefraktor” Z. Instrkde, T. 12, h. 3, s. 
89-93, 1892 (in German). 

[6] A.A. Michelson, and E.W. Morey “On the relative motion of the earth and 
the luminiferous æther” in Phil. Mag. S. 5, Vol.24, No. 151, pp.449-463 
(1887). 

[7] P.Childs, X.J. Yu, A.C.L. Wong, Y.B. Liao and G.D. Peng “Fourier 
analysis for optical fibre sensor networks” in Proc. ISMOT, New Delhi, 
India, 16-19 Dec (2009) 

[8] J.W. Cooley, and J.W. Tukey “An algorithm for the machine calculation 
of complex Fourier series” in Math. Comp., Vol. 19, No. 90, pp. 297-301  

 
 
 
 
(1965). 

[9] M. Frigo, and S.G. Johnson “The design and implementation of FFTW3” 
in Proc. IEEE, Vol. 93, No. 2, pp. 216-231 (2005). 

[10] M.C. Pease “An adaptation of the fast Fourier transform for parallel 
processing” in J. ACM, Vol. 15, No. 2, pp. 252-264 (1968). 

[11] C.D. Thompson “Fourier transforms in VLSI” in IEEE Trans. Comp., Vol. 
C-32, No. 11, pp. 1047-1057 (1983). 

[12] A.D. Kersey, T.A. Berkoff, and W.W. Morey “Multiplexed fiber Bragg 
grating strain-sensor system with a fiber Fabry-Perot wavelength filter” in 
Opt. Lett., Vol. 18, No. 16, pp. 1370-1372 (1993). 

[13] B.H. Lee, and J. Nishii “Dependence of fringe spacing on the grating 
separation in a long-period fiber grating pair” in Appl. Opt., Vol. 38, No. 
16, pp. 3450-3459 (1999). 

[14] M.G. Shlyagin, S.V. Miridonov, D. Tentori, F.J. Mendieta, and V.V. 
Spirin “Multiplexing of grating-based fiber sensors using broadband 
spectral coding” in Proc. SPIE, Vol. 3541, pp. 271-278 (1999). 

[15] P.Childs “An FBG sensing system utilizing both WDM and a novel 
harmonic division scheme” in J. Lightw. Technol., Vol. 23, No. 1, pp. 
348-354 (2005); “Erratum” Vol. 23, No. 2, pp. 931 (2005). 

[16] P. Childs, A.C.L. Wong, and G.D. Peng “A Strain Sensor System Based 
on Carrier Modulated Gratings for the Monitoring of a Large Number of 
Channels” in J. Lightw. Technol., Vol. 24, No. 3, pp. 1388-1394, (2006). 

[17] P. Childs, and G.D. Peng “Simultaneous detection of 8 spectrally 
overlapping carrier modulated Fibre Bragg Gratings” in Electron. Lett., 
Vol. 42, No. 5, pp. 274-275 (2006). 

[18] Y.J. Rao, Z.L. Ran, and C.X. Zhou “Fiber-optic Fabry-Perot sensors 
based on a combination of spatial-frequency division multiplexing and 
wavelength division multiplexing formed by chirped fiber Bragg grating 
pairs” in Appl. Opt., Vol. 45, No. 23, pp. 5815-5818 (2006). 

[19] R.P. Murphy, S.W. James, and R.P. Tatum “Multiplexing of fiber-optic 
long-period grating-based interferometric sensors” in J. Lightwave 
Technol., Vol. 25, No. 3, pp. 825-829 (2007). 

[20] M.G. Shlyagin, S.V. Miridonov, D. Tentori, F.J. Mendieta, and V.V. 
Spirin “Multiplexing of grating-based fiber sensors using broadband 
spectral coding” in Proc. SPIE, Vol. 3541, pp. 271-278 (1998). 

[21] Z. Wang, F. Shem, L. Song, X. Wang, and A. Wang “Multiplexed fiber 
Fabry-Pérot interferometer sensors based on ultrashort Bragg gratings” in 
IEEE Photon. Technol. Lett., Vol. 19, No. 8, pp. 622-624 (2007). 

[22] A.C.L. Wong, P.A. Childs, and G.D. Peng “Multiplexing technique using 
amplitude-modulated chirped fiber Bragg gratings” in Opt. Lett., Vol. 32, 
No. 13, pp. 1887-1889 (2007). 

[23] M. Jiang, Z.G. Guan, and S. He “Multiplexing scheme for self-interfering 
long-period fiber gratings using a low-coherence reflectometry” in IEEE 
Sensors J., Vol. 7, No. 12, pp. 1663-1667 (2007). 

[24] A.C.L. Wong, P.A. Childs, and G.D. Peng “Spectrally-overlapped 
chirped fibre Bragg grating sensor system for simultaneous 
two-parameter sensing” in Meas. Sci. Technol., Vol. 18, No. 12, pp. 
3825-3832 (2007). 

[25] H.Y. Fu, A.C.L. Wong, P.A. Childs, H.Y. Tam, Y.B. Liao, C. Lu, and 
P.K.A. Wai “Multiplexing of polarization-maintaining photonic crystal 
fiber based Sagnac interferometric sensors” in Opt. Express, Vol. 17, Iss. 
21, pp. 18501-18512 (2009). 

[26] A.C.L. Wong, P. Childs, and G.D. Peng “Simultaneous demodulation 
technique for a multiplexed fibre Fizeau interferometer and a fibre Bragg 
grating sensor system” in Opt. Lett., Vol. 31, No. 31, pp. 23-25 (2006). 

[27] A.C.L. Wong, P. Childs, and G.D. Peng “Multiplexed fibre Fizeau 
interferometer and fibre Bragg grating sensor system for simultaneous 
measurement of quasi-static strain and temperature using discrete wavelet 
transform” in Meas. Sci. Technol., Vol. 17, No. 2, pp. 384-392 (2006). 

[28] Гельфанд И.М., Левитан Б.М. Об определении дифференциального 
уравнения по его спектральной функции // Изв. АН СССР. Cер. мат. 
1951. Т. 15, № 4. С. 309-360 (in Russian). 

[29] Марченко В.А. Восстановление потенциальной энергии по фазам 
рассеянных волн // Докл. АН СССР. 1955. Т. 104, № 5. С. 695-698 (in 
Russian). 

[30] Захаров В.Е., Шабат А.Б. Точная теория двумерной 
самофокусировки и одномерной автомодуляции волн в нелинейных 
средах // ЖЭТФ. 1971. Т. 61, № 1. С. 118-134 (in Russian). 

[31] E.A. Robinson “Predictive decomposition of time series with application  

INTERNATIONAL JOURNAL OF MICROWAVE AND OPTICAL TECHNOLOGY,  

    VOL.5, NO.6, NOVEMBER 2010

661



 
 

               IJMOT-2010-11-122 © 2010 ISRAMT 
 

 
 
 
to seismic exploration” in Geophysics, Vol. 32, No. 3, pp. 418-484 
(1967). 

[32] A P. Goupillaud “An approach to inverse filtering of near-surface layer 
effects from seismic records” in Geophysics, Vol. 26, No. 6, pp. 754-760 
(1961).. 

[33] R. Feced, M.N. Zervas, and M.A. Muriel “An efficient inverse scattering 
algorithm for the design of nonuniform fiber Bragg gratings” in IEEE J. 
Quantum Electron., Vol. 35, No. 8, pp. 1105-1115 (1999). 

[34] J. Skaar, L. Wang, and T. Erdogan “On the synthesis of fiber Bragg 
gratings by layer peeling” in IEEE J. Quantum Electron., Vol. 37, No. 2, 
pp. 165-173 (2001). 

[35] J. Skaar, and R. Feced “Reconstruction of gratings from noisy reflection 
data” in J. Opt. Soc. Am. A, Vol. 19, Iss. 11, pp. 2229-2237 (2002). 

[36] A. Rosenthal, and M. Horowitz “Inverse scattering algorithm for 
reconstructing strongly reflecting fiber Bragg gratings” in IEEE J. 
Quantum. Electron., Vol. 39, No. 8, pp. 1018-1026 (2003). 

[37] L. Wang, and T. Erdogan “Layer peeling algorithm for reconstruction of 
long-period fibre gratings” in Electron. Lett., Vol. 37, No. 3, pp. 154-156 
(2001). 

[38] K. Kolossovski, A.V. Buryak, and R. Sammut “Optimised time-frequency 
domain layer-peeling algorithm to reconstruct fibre Bragg gratings” in 
Electron. Lett., Vol. 40, No. 17, pp. 1046-1047 (2004). 

[39] O.V. Belai., E.V. Podivilov, O.Ya. Schwartz, and D.A. Shapiro “Finite 
Bragg grating synthesis by numerical solution of hermitian 
Gel’fand-Levitan-Marchenko equations” in J. Opt. Soc. Am. B, Vol. 23, 
Iss. 10, pp. 2040-2045 (2006). 

[40] O.V. Belai., L.L. Frumin, E.V. Podivilov, and D.A. Shapiro “Efficient 
numerical method of the fibre Bragg grating synthesis” in J. Opt. Soc. 
Am. B, Vol. 24, Iss. 7, pp. 1451-1457 (2007). 

[41] A.M. Bruckstein, I. Koltracht, and T. Kailath “Inverse scattering with 
noisy data” in SIAM J. Sci. Statist. Comput., Vol. 7, Iss. 4, pp. 1331-1349 
(1986). 

[42] A. Buryak, J. Bland-Hawthorn, and V. Steblina “Comparison of inverse 
scattering algorithms for designing ultrabroadband fibre Bragg gratings” 
in Opt. Express, Vol. 17, Iss. 3, pp. 1995-2004 (2009). 

[43] S. Huang, M. LeBlanc, M.M. Ohn, and R.M. Measures “Bragg 
intragrating structural sensing” in Appl. Opt., Vol. 34, Iss. 22, pp. 
5003-5009 (1995). 

[44] P. Childs, A.C.L. Wong, W. Terry, and G.D. Peng “Measurement of crack 
formation in concrete using embedded optical fibre sensors and 
differential strain analysis” in Meas. Sci. Technol., Vol. 19, Iss. 6, (2008) 
paper 065301.. 

[45] P.C. Won, J. Leng, Y. Lai, and J.A.R. Williams “Distributed temperature 
sensing using a chirped fibre Bragg grating” in Meas. Sci. Technol., Vol. 
15, Iss. 8, pp. 1501-1505 (2004). 

[46] Y. Okabe, R. Tsuji, and N. Takeda “Application of chirped fiber Bragg 
grating sensors for identification of crack locations in composites” in 
Compos. A, Vol. 35, Iss. 1, pp. 59-65 (2004). 

[47] A.M. Gillooly, K.E. Chisholm, L. Zhang and I. Bennion “Chirped fibre 
Bragg grating optical wear sensor” in Meas. Sci. Technol., Vol. 15, Iss. 5, 
pp. 885-888 (2004). 

[48] J.A. Besley, L. Reekie, C. Weeks, T. Wang, and C. Murphy “Grating 
writing model for materials with nonlinear photosensitive response” in J. 
Lightw. Technol., Vol. 21, Iss. 10, pp. 2421-2428 (2003). 

[49] G.M.H. Flockhart, G.A. Cranch, and C.K. Kirkendall “Rapid 
characterization of the ultraviolet induced fiber Bragg grating complex 
coupling coefficient as a function of irradiance and exposure time” in 
Appl. Opt., Vol. 46, Iss. 34, pp. 8237-8243 (2007). 

[50] L. Poladian “Group-delay reconstruction for fiber Bragg gratings in 
reflection and transmission” in Opt. Lett., Vol. 22, Iss. 20, pp. 1571-1573 
(1997). 

[51] A. Rosenthal, and M. Horowitz “Reconstruction of long-period fiber 
gratings from their core-to-core transmission function” in J. Opt. Soc. 
Am. A, Vol. 23, No. 1, pp. 57-68 (2006). 

[52] J.E. Bridges, and R.A. Zalewski “Orthogonal detection to reduce common 
channel interference” in Proc. IEEE, Vol. 52, No. 9, pp. 1022-1028 
(1964). 

[53] P. Childs “Multiplexed optical fibre sensor systems for civil engineering 
applications”, Ph.D. Thesis, University of New South Wales, 2007. 

[54]  

 
 
 
S.V. Miridonov, M.G. Shlyagin, and D. Tentori “Twin-grating fiber optic 
sensor demodulation” in Opt. Commun., Vol. 191, Iss. 3-6, pp. 253-262 
(2001). 

[55] P. Childs, and Y.B. Liao “On the multiplexed limit capacity of spectrally 
overlapped continuous wave FBG sensor networks” in J. Opt., Vol. 12, 
Iss. 1, pp. 015404 (2010). 

[56] P. Childs, T. Whitbread, and G. D. Peng, “Spectrally coded multiplexing 
in a strain sensor system based on carrier-modulated fibre Bragg gratings” 
in Proc. of SPIE, Vol 5634, pp. 204-210 (2005). 

[57] B.H. Lee, and J. Nishii “Self-interference of long-period fibre grating and 
its application as a temperature sensor” in Electron. Lett., Vol. 34, No. 21, 
pp. 2059-2060 (1998). 

[58] E.M. Dianov, S.A. Vasiliev, A.S. Kurkov, O.I. Medvedkov, and V.N. 
Protopopov “In-fiber Mach-Zehnder interferometer based on a pair of 
long-period gratings” in Proc. ECOC, Vol. 52, pp. 65-68 (1996). 

[59] P. Childs, A.C.L. Wong, I. Leung, G.D. Peng, and Y.B. Liao “An In-Line 
In-Fibre Ring Cavity Sensor for Localised Multi-Parameter Sensing” in 
Meas. Sci. Technol., Vol. 19, No. 6, p. 065302 (2008). 

[60] X.J. Yu, P. Childs, M. Zhang, L.W. Wang, Y.B. Liao, J. Ju, and W. Jin 
“Relative humidity sensor based on cascaded long period gratings with 
hydrogel coatings” in IEEE Photon. Technol. Lett., Vol 21, Iss 24, pp. 
1828-1830 (2009). 

[61] I. Daubechies “The wavelet transform, time-frequency localization and 
signal analysis” in IEEE Trans. Inform. Theory, Vol. 36, No. 5, pp. 
961-1005 (1990). 

[62] E.W. Aslaksen, and J.R. Klauder “Continuous representation theory using 
the affine group” in J. Math. Physics, Vol. 10, Iss. 12, pp. 2267-2275 
(1969). 

[63] D. Estaban, and C. Galand “Application of quadrature mirror filters to 
split-band voice coding schemes” in Proc. IEEE Intern. Conf. on 
Acoustics, Speech and Signal Processing, Vol. 2, pp. 191-195 (1977). 

[64] M.J.T. Smith, and T.P. Barnwell III “A procedure for designing exact 
reconstruction filter banks for tree-structured subband coders” in Proc. 
IEEE Intern. Conf. on Acoustics, Speech and Signal Processing, Vol. 9, 
pp. 421-424 (1984). 

[65] Y. Meyer “Ondolettes et fonctions splines” in Sem. Equations aux 
Derivees Partielles – Ecole Polytechnique, Exp. 6, pp. 1-18, 1986-1987 
(in French). 

[66] S.G. Mallat “A theory for multiresolution signal decomposition: The 
wavelet representation” in IEEE Trans. Pattern Anal. Machine Intell., Vol. 
11, No. 7, pp. 674-693 (1989) 

[67] S. Mann, and S. Haykin “The adaptive chirplet: an adaptive generalized 
wavelet-like transform” in Proc. SPIE, Vol. 1565, pp. 402-413 (1991). 

INTERNATIONAL JOURNAL OF MICROWAVE AND OPTICAL TECHNOLOGY,  

    VOL.5, NO.6, NOVEMBER 2010

662


